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We present results on two different problems: the Lyapunov exponent of large, 
sparse random matrices and the problem of polymers on a Cayley tree with 
random complex weights. We give an analytic expression for the largest 
Lyapunov exponent of products of random sparse matrices, with random 
elements located at random positions in the matrix. This expression is obtained 
through an analogy with the problem of random directed polymers on a Cayley 
tree (i.e., in the mean field limit), which itself can be solved using its relationship 
with random energy models (REM and GREM). For the random polymer 
problem with complex weights we find that, in addition to the high- and the 
low-temperature phases which were already known in the case of positive 
weights, the mean field theory predicts a new phase (phase III) which is 
dominated by interference effects. 

KEY WORDS:  Lyapunov exponent; directed polymer; interference; 
localization. 

1. i N T R O D U C T i O N  

It  has been known,  since the famous work  of Wigner  (1) and  Dyson ,  (2) tha t  
the p roper t ies  of large r a n d o m  N x N matr ices  can be descr ibed by  analy t ic  
methods .  (3) Proper t ies  such as the densi ty  of eigenvalues of large N x  N 
matr ices,  the elements  of which are r a n d o m l y  dis t r ibuted,  can be ca lcula ted  
analy t ica l ly  in the l a rge -N  limit,  giving rise to the wel l -known semicircular  

law. 
Frequent ly ,  p roduc t s  of r a n d o m  matr ices  arise in the s tudy of d i so rdered  
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962 Cook and Derrida 

systems or dynamical systems ~3-v) and one needs to evaluate the Lyapunov 
exponents of these products. Except in some limiting cases ~8) or particular 
examples, ~9) it is not known in general how to calculate Lyapunov exponents 
analytically. 

Recently Newman ~~ considered the problem of calculating the 
Lyapunov exponents of products of large Nx N matrices. For finite N, he 
was able to give a closed expression for all the Lyapunov exponents when 
the matrix elements were distributed according to a Gaussian distribution. 
In addition, in the limit of large matrices (N ~ ~) ,  he obtained the density 
of Lyapunov exponents for elements distributed according to an arbitrary 
distribution. In this paper we seek to extend the consideration of products 
of large random matrices to the case of sparse matrices and we present an 
expression for the largest Lyapunov exponent of such large, sparse, real 
matrices, the nonzero elements of which are chosen from an arbitrary 
distribution. The result is obtained by utilizing a close connection between 
this problem of random matrices and another problem in the theory of 
disordered systems, that of directed polymers in a random medium. ~12-18) 

The problem of directed polymers in a random medium is presently an 
active area of research in the theory of disordered systems. Much progress 
has been made on the problem both by analytical ~13 lv~ and numerical 
techniquesJ 18) Recently a generalized version of the problem has been 
introduced ~19-21) (where the statistical weights of the polymers are no 
longer all positive) as having possible relevance to hopping conductivity in 
random media. In this work we look at this generalized version of the 
problem and present results on its mean field solution. 

In order to present our findings and discussions of several different 
problems in a clearer way, we shall first discuss our results (in Sections 2 
and 3) and then later explain how they can be obtained (Sections 4-6). The 
paper is therefore arranged as follows. In Section 2 we define the random 
matrix problem that we shall consider and give the analytic expression for 
the largest Lyapunov exponent. Depending on the number of nonzero 
elements per row and on the probability distributiol~ of these elements, we 
shall see that three possible cases can occur, each case corresponding to a 
different analytic expression for the largest Lyapunov exponent. These 
expressions are compared with the results of numerical simulations for 
several examples. 

In Section 3, we define a version of the directed polymer problem 
(where the weight of each path can be either positive or negative) and give 
its mean field solution. We obtain three possible phases: in addition to the 
high-temperature and the low-temperature phase already known in the case 
of a polymer with positive weights, we find a new phase dominated by 
interference effects. 
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In Section 4 we begin the discussion of how our results were obtained. 
The expressions given in Sections 2 and 3 follow from the close rela- 
tionships between four different problems of statistical mechanics: the 
Lyapunov exponent of large, random, sparse matrices, directed polymers in 
a random medium, the generalized random energy model (GREM),  (22'23) 
and the random energy model (REM). (24-26~ These four problems have the 
same phase diagram. In Sections 5 and 6, respectively, we show how one 
can solve versions of the REM and GREM, which provide us, via the links 
discussed in Section 4, with the main results of this paper. 

2. THE LARGEST L Y A P U N O V  EXPONENT OF A P R O D U C T  
OF LARGE, SPARSE, R A N D O M  MATRICES 

Consider random matrices, of size N x N, with K nonzero real elements 
in each row. Let the positions of the K nonzero elements be selected at 
random, each position being equally likely, and let each nonzero element 
x be chosen according to a given probability distribution g(x). If one fixes 
K, but allows N to become very large (N ~ oe), it is possible to calculate 
the largest Lyapunov exponent 7 of a product of such matrices. It is found 
that there are three possible cases, depending upon the choice of the 
distribution g(x). 

It is convenient to define a function G()~) as 

' E ; \  ] G(),) =-:  log K g(x)lxl>dx (1) 

and to define ~mm to be the value of 2 that minimizes G()o). For a given 
distribution g(x), the largest Lyapunov exponent 7 is given by 

7 = 7II if )Cmi n ~< I (2) 

? =max(71, 7n) if 1 ~< )~rnin ~< 2 (3) 

7 = max(7~, TIH) if 2 ~ m i  n (4) 

where 71, 7H, and ?m are 

?,=logIKf+_~g(x)xdx ] (5) 

"/H = a(J[mm) (6) 

7H, = G(2) (7) 

To avoid some difficulties which would arise for some g(x) which contain 
functions, we will exclude such distributions, requiring that g(x) contains 
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no delta function. [For example, if g(x)  = (1 - p) 6(x  + 1 ) + p6(x  - 1 ) and 
K =  2, it is easy to construct pairs of matrices M~ and M2 which occur with 
some nonzero probability, such that M I M 2  = 0.] 

Let us first compare these analytic predictions for 7 with the results of 
numerical simulations for three different examples (Fig. 1): 

Examplel :  g ( x ) = l  if a < ~ x < ~ l + a  

= 0 otherwise (8) 

Example 2: g ( x ) = a x  -(a+ l) x >~ l 

= 0  x <  1 (9) 

Example 3: g ( x ) = � 8 9  (a+l) IXI~>I 

=0 Ixl<l (lO) 

For each of these examples, we calculated the largest Lyapunov 
exponent for three matrix sizes N =  1, 100, and 10,000 by performing the 
product of 5 x 105 (for N =  1), 5 x 104 (for N =  100), and 5 x 103 (for 
N =  10,000) random matrices. We always kept the number of elements K in 
each row to be K =  4. 

We chose the positions ix, i2 ..... ix of the K nonzero elements of each 
row at random. When two elements occurred at the same location, they 
were added (in particular, for N = 1, we always had il = i2 = i3 = i4 -= 1). 

The results of the simulations for these three examples are shown 
in Fig. 2, together with the analytical expressions of 7 obtained from 
Eqs. (2)-(7). 

For example 1 [see Eq. (8)] we see in Fig. 2a that there is a transition 
at a = -1/3.  Below this value of a, the numerical results converge rapidly 
with increasing N to 7in [Eq. (7)], whereas above it, they converge rapidly 
toward 7i. This agrees with the theoretical prediction. For this choice of 

Fig. 1. 

l + a  x 

g(x)  

b._ 
-1 1 x 

(a) (b) (c) 

The distributions g(x) used to calculate the Lyapunov exponents in the numerical 
simulations shown in Fig. 2. (a) Eq. (8); (b) Eq. (9); (c) Eq. (10). 
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Fig. 2. The largest Lyapunov exponent y plotted against the parameter a for the distributions 
g(x) in (a) Fig. la, (b) Fig. lb, (c) Fig. lc. The curves show the analytical results [-, 7i; 
Eq. (5); ..., ?u, Eq. (6); - -, 7m, Eq. (7)] and the points show the numerical data for system 
sizes N= 1, 100, 10,000. 

g(x), Eq. (8), one always finds • m t n  > 2 and so one expects only to observe 
cases I and III. 

To  observe case II, we had to choose  other distributions g(x) that give 
a value )~min<2 [Eqs. (9) and (10)] .  In the case of  distribution (9), 
Eqs. (2 ) - (7)  predict a transition between case II and case I as a is 
increased. This can be clearly seen from the numerical data in Fig. 2b, 
where the analytic expressions (5) and (6) are also shown. For large values 
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of the parameter a the results converge rapidly toward 7i, and below 
a ~ - 1.37 the results converge toward yx~, although the convergence is 
notably poorer in this case. 

Lastly we considered a power-law distribution, symmetric about x = 0 
[see Eq. (10)]. Clearly, one does not expect to observe case I now, as from 
(2) one sees that y i=  -oo .  The numerical results are shown in Fig. 2c 
together with the analytic expressions for II and III [Eqs. (6) and (7)]. For 
large enough a the numerical data converge rapidly toward Ym, whereas 
below a-~ 2.74 they converge toward ~H with a slower convergence rate. 

So, the simulations agree well with our analytical predictions 
[Eqs. (2)-(7)].  The convergence of the data toward the theoretical predic- 
tions as one increases the matrix size N is very rapid in cases ! and III and 
clear, but notably slower in case II. It would be interesting to be able to 
understand these rates of convergence, but at present we are not able to do 
this. [We only have an argument which would give that it always converges 
faster than log(log N)/log N. ] 

Finally, in this section let us point out one situation in which such 
N x N sparse matrices arise. Consider a geometry in which one has a series 
of L layers, each layer composed of N points (see Fig. 3). We shall label 
the points by integers n (n = 1, 2 ..... N). Suppose that each point in layer l 
is connected to K points in layer l +  1, these K points being chosen at 
random from the N possible points. So there are K N  bonds between layers 
l and I+  1. We shall now consider a directed polymer problem in such a 
geometry. For  each of the randomly selected bonds t)" between adjacent 
layers one chooses a random energy eij from a given distribution P(eo) and 
a sign Sij chosen to be positive with probability 1 - p  and negative with 
probability p (0 ~ p ~< 1 ). One then wants to consider all the walks passing 
through one point in each layer that can be formed using the random 
bonds. The energy of such walk co is taken to be the sum of the energies 
on the bonds that it visits and the sign of the walk co is the product of the 

J t 

Fig. 3. The layered geometry of the directed polymer problem discussed in Section 2. 
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signs S o. of the bonds visited. One can then define a kind of partition sum 
ZL(n) by 

Zc(n)=~ ~I (Sije ~,j/r) (11) 
o)  ij  G (.o 

where the sum runs over all walks of length L emanating from the point 
n in layer L, and the product includes all bonds that are visited by walk 
co. Here T is the temperature. One can then write a recursion for ZL, 

N 
ZL+,(n)= ~ S,,me .... /TZL(m) (12) 

m = l  

Hence the vec to r  { Z L +  1 } is simply obtained from {ZL} by multiplication 
by an N x N matrix with K nonzero random elements in each row. One 
then clearly has a problem involving a product of random matrices of the 
type defined at the beginning of this section. This connection between the 
random matrix problem and directed polymers will be discussed further in 
Section 4. 

3. DIRECTED P O L Y M E R S  IN A R A N D O M  M E D I U M :  
M E A N  FIELD THEORY 

In this section we present the mean field solution of a generalized 
version ~21) of the problem of directed polymers in a random medium. First 
let us define the problem. One has some regular lattice and for each bond 
ij of the lattice a random energy e 0. is chosen according to a given probability 
distribution p(e~). Also, one places a random sign S~ on each bond, taken 
to be positive with probability 1 - p  and negative with probability p. One 
then considers all directed walks co emanating from some origin. By directed 
walk we mean a walk for which one selected coordinate is an increasing 
function of the length of the walk. One defines the energy Eo~ of such a 
directed walk co to be the sum of the energies on the bonds visited by that 
walk 

Eo)= Z eij (13) 
/jEco 

The "partition function" of the problem is then taken to be 

Zc(r)=~(o.l~ So)exp(-E~o/T) (14) 

where the sum runs over all directed walks co of length L emanating from 
the point r and T is the temperature. Although we shall call ZL(r) a partition 
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function, it can be positive or negative, due to the inclusion of random 
signs in the problem. In calculating the "thermal" properties of the system, 
to obtain the phase diagram, one is therefore interested in evaluating the 
quantity ( log]ZL[)  (where ( . ) d e n o t e s  an average over disorder). Notice 
that the standard directed polymer problem (see, for example, refs. 12-18) 
is recovered if p -- 0 or 1. 

ZL(r) is the sum of contributions from all the paths of length L which 
reach the point r. This can be viewed as the amplitude resulting from the 
transmission of a plane wave through a random medium. 

The results we present below apply to the mean field limit of this 
generalized polymer problem, i.e., when one takes the underlying lattice to 
be a branch of a Caytey tree with branching ratio K (see Fig. 4). One then 
places a randomly-chosen energy and sign on each branch of the tree and 
considers all the walks running down the tree that originate at the root 
(the point 0 in Fig. 4). The standard directed polymer problem, i.e., when 
p = 0 or 1, has already been solved in this mean field limit for an arbitrary 
distribution of energies p(e) and branching ratio K. (15) One finds two 
phases: a high-temperature phase in which the quenched and annealed free 
energies are equal 

l i m  (log_~ZLI)= lira l o g l ( Z c ) l  L ~  L ; p = 0 o r  1 (15) 

and a low-temperature frozen phase in which the partition sum is 
dominated by a finite number of walks. 

When one allows p to vary, one obtains (see Sections 4-6) three 
phases. First there is a high-temperature phase, which we shall label phase I, 
which is very like the high-temperature phase in the p = 0 or 1 problem. In 
this phase the quenched and annealed free energies are equal, in the sense 
that 

lim (IogIZL(T)[) = lim I~  (16) 
L--,~ L L ~  L 

0 

Fig. 4. A branch of a Cayley tree with branching ratio K= 2. One directed walk emanating 
from the root, 0, is shown is bold. 
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Second there remains a low-temperature phase of the same character 
as at p = 0. This is to be expected, as one knows that the partition sum is 
then dominated by a small number of walks and so the addition of random 
signs is unlikely to lead to any dramatic interference effects. We shall label 
this low-temperature phase, phase II. Lastly there appears a new phase, 
phase III. This is a high-temperature phase in which interference effects 
between walks with similar energies but opposite signs are important. 

Let us now give expressions for (log IZL] }/L in each of these phases, 
in terms of the branching ratio K, the energy distribution p(e), and the 
parameter p. 

Phase I: 

lim (l~ p(e)e ~/r de]+log[]l-2p]] (17) 
L ~  L 

Phase II: 

lira (loglZL] } 1 I ~/rde ] min- log  K I p(e)e (18) 
L ~ 2 

Phase III: 

lira ( l~ 1 [ f 1 L ~  L ~log K p(e)e 2~/Vde (19) 

Which phase the system finds itself in is determined in the same way as in 
Section 2 [Eqs. (2)-(4)]: if 2mln< 1, the system is always in phase II. If 
1 <)~min<2, (logIZL]}/L is given by the maximum of (17) and (18). If 
2rain > 2, (log IZL[ )/L is given by the maximum of (17) and (19). 

The phase diagram for the case when the energy distribution is chosen 
to be a Gaussian, 

1 
p(e) = (2~)1/2 exp( -  e2/2) (20) 

and K = 2  is shown in Fig. 5. For this distribution the three possible 
expressions for (log IZLI )/L are: 

Phase I: 
( loglZLI) 1 

L 2T2 +log K+log([1 -2pL) (21) 

Phase II: 
(logjZLI } (2 log K) ~/2 

L T (22) 
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Fig. 5. Phase diagram for the mean field directed polymer problem with K -  2 and Gaussian 
bonds [Eq. (20)], showing the positions of the three phases, Eq. (17)-(19). Here Pc shows the 
asymptotic position of the boundary between phases I and III when T~  ~. The temperature 
scale is in units of To = (2 log 2) -1/2. 

Phase III: 

<loglZLI > 1 1 
L - T 5 + 2  l ~  (23) 

The relations for the transition lines are 

l o g l l - 2 p l  = - ~  -7 -o  for T<<.2To (24) 

1 1 
l o g ] l - Z P i - 2 T  2 4T 2 for T>-2To (25) 

1 
l o g i l - 2 p l ~ < - 8 T ~  for T = 2 T o  (26) 

where To = (2 log K ) -  1/2 is the transition temperature when p = 1. 
Notice that for all choices of p(e), the phase diagram remains 

symmetric about p =  1/2. (This is due to the fact that the value of the 
energy e on each bond and the sign S are uncorrelated.) Also, the 
transition between phases II  and I I I  is always second order, while the 
transitions between phases I and II  and phases I and III  are first order 
except at their endpoints, where they become second order. 

Having presented our results and briefly discussed the nature of the 
three phases, let us compare our theoretical predictions with numerical 
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simulations. The simulations were performed in the following manner: 
Instead of directly simulating a tree structure (Fig. 4), which would be very 
difficult due to the exponential growth of the number of the bonds with the 
length of the polymer, we used the geometry discussed in Section 2 (see 
Fig. 3). We took the lattice which consists of L layers each containing N 
points. Each site at layer l is connected to K randomly chosen sites in layer 
I+ 1, the bonds being assigned random energies EEq. (20)] and signs 
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Fig. 6. Plot of T(IogIZLI )/L for the directed polymer problem in the geometry of Fig. 3, 
with K =  2 and Gaussian bonds, along three lines on the phase diagram. The lines explored 
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solid curves show the analytic predictions, Eqs. (17)-(19), and the points are the results of 
numerical simulations for N =  1, 10, 100, 1000, 10,000. 
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as described above (plus with probability p and minus with probability 
1 - p). If one keeps K fixed, as one increases the number of sites in each 
layer N, the structure will come to resemble locally that of a tree with 
branching ratio K. This procedure of keeping K fixed and examining how 
the simulations converge as N becomes large allows one to simulate much 
larger systems. The particular case we chose to look at was K = 2  and 
Gaussian bonds, given by (20) (the phase diagram for this case is shown 
in Fig. 5). We took lengths of lattice L = 5 x 105 for N =  1, L = 15 x 104 for 
N =  10, L = 5 X 10 4 for N =  100, L = 15 x 10 3 for N =  1000, and L = 5 x 103 
for N =  10,000. In order to explore the phase diagram (Fig. 5), we selected 
three lines on the diagram along which to perform the simulations. The 
results of the simulations are shown, together with the theoretical predictions 
[see Eqs. (21)-(23) and Fig. 5] in Figs. 6a-6c. In Fig. 6a we show how 
T(log IZLI )/L varies as one changes p at the temperature T =  1.5To, and 
in Fig. 6b we show the same but at the temperature T=2.5To [where 
To = (2 log 2)-1/2]. Lastly, in Fig. 6c, we show how T( log  [ZL[ )/L varies 
with temperature when one fixes p--0.05. In all three cases one sees the 
first-order transition as a cusp in the "free energy." The numerical data 
converge well toward the theoretical results, giving good confirmation of 
our analytical expressions. As we remarked in the preceding section, one 
can see that the rate at which the numerical data converge toward the 
theoretical results is markedly better in the two high-temperature phases 
(I and III) than in the low-temperature phase (II). 

4. THE RELATIONSHIP  BETWEEN R A N D O M  M A T R I C E S ,  
D IRECTED P O L Y M E R S ,  GREMs,  A N D  REMs 

Our main results have been presented in the two preceding sections. In 
the remainder of this paper, we shall explain how they were arrived at. To 
do this, it is necessary to notice the close relationship between four separate 
problems: the random matrix problem of Section 2, the directed polymer 
problem of Section 3, the generalized random energy model (GREM), (22.23) 
and the random energy model (REM). (24) 

In Section 2 we have seen that calculating the Lyapunov exponent of 
large, sparse matrices gives the solution of the directed polymer in the 
layered geometry of Fig. 3. Indeed, if on each bond of this layered lattice, 
one chooses a random energy e and a sign S, the matrix element x corre- 
sponding to this bond is just 

x = S e x p ( - e / T )  (27) 

as discussed at the end of Section 2. 
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As noticed in Section 3, if for the geometry of Fig. 3 one increases the 
number of points in each layer N while keeping the number of connections 
from each point to the next layer K fixed, the resulting structure begins 
locally to resemble a tree. Hence the problem of directed polymers on a 
Cayley tree (Fig. 4) will be recovered by taking N to be very large in the 
geometry of Fig. 3. This makes our first connection: if one can solve the 
problem on the tree (Section 3), one can calculate the largest Lyapunov 
exponent of the random matrices of Section 2, for N large via the 
identification (27). 

In the way the polymer problem has been defined in Sections 2 and 3, 
the sign S and the energy e are uncorrelated. This implies some constraint 
on the distribution g(x) of the variable x obtained through the identification 
(27). In what follows we shall restrict our discussion to this case (S and 
uncorrelated) to keep the notation simpler. However, we have checked that 
the procedure can be extended to a general distribution g(x). 

We are now going to argue that the expression for ( log lZr ]  >/L for 
the tree geometry is the same as for two other problems, the REM and the 
GREM, that we shall solve in the next two sections. This identity between 
the tree, the REM, and the GREM was already known 115) in the case of 
positive weights,i.e., when all the signs S = + 1. So the goal of the remainder 
of this work is to solve the R E M  and the GREM when the weights can 
have plus or minus signs and to argue that the identity with the tree 
problem remains valid. 

4.1. The REM 

In the random energy model REM, the partition function Z is defined 
as the sum of K L independent terms 

KL 

Z =  ~ S.  e x p ( - - E J r )  (28) 
g = l  

where S~=_+1 and exp( -EJT)  are respectively the sign and the 
amplitude of the ~tth term of the sum. 

The number K L of terms in (28) is chosen to be the same as the 
number of polymers of length L on the tree; the random energy E~ has the 
same distribution as the energy of a walk of L steps on the tree, i.e., its 
generating function is equal to 

if ]L (e-~E~> = (e  ~.~>c = p(e)e -~ de (29) 
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where e is the energy of a bond of the tree, and the sign S, has the same 
distribution as the sign of a given path of L steps on the tree, i.e., 

S,  = +1 with probability �89 + (1 - 2 p )  L] 
(30) 

S~ = -1  with probability �89 - (1 - 2p) El 

For large L, the distribution P(E) of E~ takes in general the form 

P(E) ~ (2rcL) 1/2 I - f  "(E/L)] -'/2 exp[Lf(E/L)] (31) 

where the function f(x) is related to p(e) by a Legendre transform 

max [f(e)-  ~2 ] = log [ f ~ d~ 1 (31a) 

Using (29) and (31), one could show that the function f is convex ( f " <  0). 
For example, for a Gaussian p(e), one gets a Gaussian P(E), 

p(e) = (27r)-1/2 exp(-e2/2) ~ P(E) = (2rcL)-~/2 exp( - EZ/2L) (32) 

We see that the REM defined this way keeps the same number of 
terms in Z and the same distribution of single energies E as the tree 
problem. However, it neglects (as usual in the REM approach (24)) the 
correlations of energies or signs between different paths. 

4.2. The G R E M  (:2,23) 

The generalized random energy model (GREM) aims to restore some 
of the correlations between energy levels or signs that have been ignored in 
the REM. In a GREM of n steps, the possible configurations of the system 
are represented by the endpoints of a tree of n steps (Fig. 7). The model is 
defined by two sets of n numbers, ei, 1 ~< i~< n, and ai, 1 ~< i ~  n, which 
satisfy 

FIo~i=K; ~i>1 (33) 
i = l  

~ a i =  1; a i > 0  (34) 
i = 1  

For each bond of the tree one chooses a random sign -(u)" U t 

a(u)-  +1 with probability �89 +(1 2p) ca'] 
(35) 

= - 1  with probability � 8 9  c~,] 
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(V) {V) 

[e(2~"~ ! e'2"~ ~ ~ / ~ 

(e<~[ , 

,e 3.1b) crs' ' tt l f"it '  /t/tl 
(E~,Sp) (Ev,S v) 

I L a I L 0.1 branches 

L a 2 L o`2 branches 

a 3 L o. 3 branches 

Fig. 7. The structure of a three-step (n = 3) generalized random energy model (GREM). 

and a random energy el ~) according to a distribution P(e, ai) which satisfies 

If 4 2ei ) ) =  p(~)e -x': 

P( e, ai) ~ exp [ Lai f ( ~a~) ] (37) 

The total number of branches at level i is (71c~2 " '  ~i)L. By definition of the 
model, the configurations are identified with the endpoints of this tree and 
the energy E~ and the sign S~ associated with each configuration are given by 

E . =  ~ el "/ (38) i=l 
tl 

S~ = H a} ~) (39) 
,=1 

where the sum and the product are over all the bonds which connect the 
configuration to the top of the tree. 

In the case n = 1, the GREM reduces to the REM. In the other limit 
( n = L ;  a i=  l/L; af=K~IL), one recovers the tree problem discussed in 
Section 3. So the GREM gives an interpolation between the REM and the 
tree. As long as n is finite, one can solve the GREM with similar ideas as 
those used in the solution of the REM. However, if n increases (choosing 
a~= 1In and ~=KII"), the correlations between the energies E~ and the 
signs S~ of different configurations look more and more similar to those of 
the tree problem. 
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We shall see in Sections 5 and 6 that the REM and GREM (with 
n = 2) have exactly the same phase diagram (Fig. 5) and the same expres- 
sion for ( log [Zrl ) /L  for L large. In fact, one can extend the results of 
Section 6 to arbitrary n. So the expression for ( l og [ZL] ) /L  is the same for 
the REM and the GREM (for any finite n) in the whole phase diagram. 

In the case p = 0 ,  this common free energy of the REM and the 
GREM is known to be the same as the free energy of the tree problem. (15/ 
Although we have been unable to derive the solution of the tree problem 
directly for p # 0, we believe that, since <log ]ZLI >/L has the same expression 
for the GREM and the REM when one chooses the energy distributions, 
the signs, and the branching ratios to mimic the tree (35)-(37), this 
expression should remain valid for the tree problem. 

So the problems (1) the Lyapunov exponent of the large, sparse 
random matrices, (2) the directed polymer on the tree, (3) the GREM and 
(4) the REM have the same solution (already given in Sections 2 and 3). 
The numerical simulations already presented in Sections 2 and 3 seem to 
confirm that we do indeed have the correct solution to all these four 
problems. 

5. S O L U T I O N  OF T H E  R E M  

In this section we solve the REM defined in the preceding section, 
(28). To recap, we have a system of K L branches, each branch # carrying 
a random energy E u chosen according to a distribution P(E) given by (29), 
(31), and a random sign Su chosen according to (30). The partition function 
is then taken to be 

K L 

ZL= ~ S,e -E~/r (40) 
,u=l 

where T is the temperature. To determine the phase diagram of the model, 
we are going to calculate the equivalent of the free energy, - T ( l o g  IZL! ). 

One can divide ZL into two parts: one part, Z +,  is the sum of the 
Boltzmann weights of all the branches with a positive sign Su, and the 
other, Z [ ,  is the sum of the Boltzmann weights of all the branches which 
have a negative sign, 

- + - Z [  ( 4 1 )  Z L - Z L 

Now we can solve the general problem provided that we know enough 
about the p = 0 problem,(24) as Z Z and Z [  are both p = 0 REM partition 
functions. 
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5.1. The Case p = 0  

To determine the phase diagram of the model (40), we shall need to 
know the solution of the p = 0 REM and also something about its sample- 
to-sample fluctuations. There are several w a y s  (24-26) of solving the REM. 
We shall use here the intuitive one, which consists of using the micro- 
canonical ensemble. (24~ If X ( E )  is the density of levels at energy E, the 
average of Y ( E )  is given by [see (31)] 

(.A/(E)) = (27zL)-~/2[-f"(E/L)] -1/2 exp[L f (E /L ) ]K  L (42) 

Because the function f is convex, one expects that there are in general 
two energies Eas and E~s (E~s<E~s)  for which (JV(E))~_I .  For 
energies such that E / L < E c s / L  or E/L>E~s /L ,  the average (JV(E))  is 
exponentially small in L. Therefore 

~ttypical (E) = 0 (43) 

For energies such that E G s / L < E / L < E 6 s / L ,  the average ( Y ( E ) )  is 
exponentially large in L, Therefore the typical value is the same as the 
average, 

,~typical(E) = ( J V ( E ) ) +  (~Ar(E)) ~/2 (44) 

Lastly, for energies E which (for large L) differ from Eos or E~s by order 
1, ~ttypical(E) is of order 1 and the fluctuations are also of order 1 [so (44) 
still gives the magnitude of the typical value and of the typical fluctua- 
tions]. 

From (43) and (44) one can obtain the large-L behavior and fluctuations 
of the partition function 

Z L = f ~typical(E) e x p ( - E / T )  dE (45) 

First, the ground-state energy Ecs/L is 
( Y ( E ) )  = 1, i.e., is the lower solution of 

f (E~s /L  ) = - log  K 

where the function f is defined by (31) 
temperature occurs at T c given by 

f ' (EGs /L  ) = l IT  c 

given by the 

and (29). The 

condition 

(46) 

transition 

(47) 

822/61/5-6-2 
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Above T~, the integral (45) is dominated by energies E where (Jf f (E))  is 
very large, i.e., the free energy for T> T~ is given by [see (31a)] 

lim (log ZL) _ max [fie)  - ~/T] + log K 
L ~  L 

=l~ P(e)exp(-T)de ] 

= lim l o g ( Z c )  
L ~ o o  L 

(48) 

For T< T C the integral (45) is dominated by energies close to EGs (since 
for ElL < Eos/L one has Xttrpical = 0). Therefore 

lim (log ZL) lira - E ~ s  1 (49) 
L ~  L L~oo L T 

This reasoning can be easily generalized to calculate the typical fluctuations 
of the partition function. Using the fact the fluctuations of JV(E) are given 
by (44), one finds that the magnitude of the fluctuations changes at 2T~. 
Thus, one obtains: 

For T< Tc 

ZL(T)=a(T)exp ( @  s) (50) 

For To< T<2Tc 

=KL (e'p ;/L+O T'O.p ,51, 
For T>  2To 

ZL(T) = (ZL(T) ) + a(T)(ZL(T/2) ) 1/2 
=KL(exp(--e/T))L+_a(T)KL/2(exp(--Ze/T))L/2 (52) 

where in (50)-(52), a(T) is a quantity which has sample-to-sample 
fluctuations of order one. The appearance of the temperature 2To is simply 
due to the fact that 

fE~s ('/V(E))I/2 exp( -E /T)  dE (53) 
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is dominated by energies where ( X ( E ) )  is large when T >  2T~, whereas 
it is dominated by the neighborhood of E = Eas when T <  2T~. 

5.2. The Case p ~ 0 

We noticed in (41) that one could write ZL as the difference of two 
p = 0 REM partition functions, Z [  and Z~-. Since the random signs are 
chosen according to (30), we know that Z + and ZZ are the sum of 

K L 
T [1 ___ (1 - 2p) L _+ cK -L/2 ] (54) 

terms, respectively, where c is a sample-dependent number of order I. 
Using the results (51)-(54) for Z + and Z [ ,  one finds that: 
For  T <  T o 

ZL = Z ~  - Z Z  ~ a(T) e x p ( - E ~ s / T )  (55) 

For T ~ < T < 2 T c  

ZL = Z [  - ZZ- -~ KL (exp(--~/T)>L (1 -- 2p) L _+ a(T) e x p ( - E o s / T )  

(56) 

For  2To ~< T 

ZL = Z + - Z L = K L (exp( - e/T) ) L (1 - 2p) L + a(T) K L/2 @xp( - 2e/T) )L/2 

(57) 

The main difference between (56)-(57) and the case p = 0 ,  (51)-(52), is 
that in (51) and (52) the fluctuating part was negligible compared with 
the leading term ( Z L ( T ) ) .  In (56)-(57), the effect of the signs has been 
to reduce the average ( Z L ( T ) )  by the factor ( 1 - 2 p )  L, whereas the 
magnitude of the fluctuations is not affected by the signs. Therefore, 
depending on the temperature T and p, the term which dominates (56) and 
(57) is either the term coming from the average or the fluctuating term. 
This leads to the three following possible expressions for the free energy: 

Phase I: 

lim I~ l o g [ K / e x p ( - T ) / ] l - 2 p ] ]  (58) 
L ~  L 

Phase II: 

lim loglZLI -Eos (59) 
L ~  L T 
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Phase III: 

lim l o g l Z c , _  l log[K/exp{-2~\ ] (60) 
L ~  L 2 L \ \ r ) / _ l  

and to the facts that (a) for T <  T<, the system is always in phase II, 
(b) for To < T <  2To, the system is either in phase II or I, depending on 
what is the better free energy, and (c) for T >  2Tc, the system has to choose 
between phase I and phase III, again according to what is the better free 
energy. 

Notice that for (58)-(60) to coincide with (17)-(19) one needs to show 
that (59) and (18) are the same. To do so, one can rewrite the relation 
(31a) between the function f and the distribution p(e): 

max(f(e)-e2+logK)=log[Kfp(~)e ~ ~ ds] (61) 

From (61), it is possible to see that if So is the value of e which maximizes 
the left-hand side of (61), one has 

Therefore, if •min is the value of 2 which minimizes 

~log[Kf p(e)e X~de] (63) 

one can see that the right-hand side of (62) vanishes for 2 =  2 .... . So the 
corresponding energy eo satisfies 

f(eo) + log K =  0 (64) 

i.e., eo is the ground-state energy [see (46)]. 

6. S O L U T I O N  OF T H E  T W O - S T E P  G R E M  

In Section 4 we defined a GREM of n steps. We shall now show how 
one can solve the case when n = 2. We have a two-step tree structure with 

r and ~2 L at the first and second steps, respectively, and branching ratios ~ 
we shall choose that ~l~2=K [see (33)]. On each branch of the tree one 
places a random energy el ") chosen from the probability distribution (37) 
and a random sign ~rl"} chosen according to 

(u)-  +1 with probability �89 + q~(el~))] 0 "  i - -  

= - 1  with probability �89 - q~(elU))] (65) 
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Here we have allowed the sign distributions to depend on the energy. The 
case of uncorrelated sign and energy distribution (35) is recovered by 
choosing q~= ( 1 - 2 p )  ~'. The sign S~ and energy Eu of each configuration 
# associated with one endpoint of the tree are defined as in (38) and (39) 
and one then defines the partition function to be 

Z =  ~ S. exp (66) 
#=1 

This problem has already been solved when all the signs are all chosen to 
be the same. (22'23) We shall now extend this solution to the more general 
case (65). 

The average number of first step branches with a sign al and an 
energy el, <~A~(el)),  is given by 

<JV'~'(el))~[l +a~qL(el)]exp[L(alf(~a~)+lOg~l) ~ (67) 

where we have used the energy distribution (37). The function f is convex 
and so one expects that there are two energies eGs and e~s (e~s < e~s) for 
which < Y ~ ( e l ) >  ~ 1. For energies below eGs or above e~s the average 
(67) is exponentially small in L. Hence, 

~/'~)typical(el ) = 0 (68) 

For energies between e~s and e~s, < Y l l ( e l ) )  is exponentially large in L 
and so 

~/ '~] ty ica l (C1)  = < Y ~ ( e l )  ) + c~'(el)<JV'~l(el)> '/2 (69) 

where c~(el) is a Gaussian fluctuation of order one. 
Knowing the typical values of Y~'(el ) ,  one can then calculate the 

average number of configurations with energy E and sign a l on step one 
and 0- 2 on step two, (X"I '~2(E)) ,  given that X ~ ( e )  is given by its typical 
value (68)-(69), 

<JV'~ > ~ f de #[/'~(e)typica 1 [1 + a2qL(E - e)] 

f E - -e  
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So, using (68) and (69), 

< Y~"~(E) ) ~ fe~ . . . .  ~s de { [ l + alq~(e) ] 

[ ( xexp L l O g ~ l + a l f  ~a l  +c"~(e) 

x[ l+o2q~(E-e)]exp  L log~2+a2f~--E--afa2)) j 

(71) 

The integral in (71) can be done by a saddle method. One replaces each 
integral by the integrand evaluated either at its saddle point, if the saddle 
point lies within the allowed range, or at the boundary, if the saddle point 
falls outside the range of integration. From its average (71), one can then 
determine the typical value of Y0-1'0"~(E) as we did before for Y ~ ( e l ) ,  i.e., 

O-l,O" 2 
~ / "  ( E ) t y p l c a  1 

= 0  

= (jUO",,'~2(E)> + d0""~2(E)(jV'~I'0"2(E)> I/2 

if <JV'al'o-Z(E) > .~ 1 

if (Y~ >> 1 

(72) 

where d~"~2(E) is a fluctuating quantity of order one. The total density of 
levels Y ( E )  weighted by the signs can then be evaluated by summing over 
the contributions from each y~ ,~2 :  

'/f'(E)typical-~ 2 0" 10"2 JV'GI ' c~2 (E)typ ical (73) 
O-1,0.2 = + l  

As expression (71) is rather cumbersome, let us from now on limit 
ourselves to considering the case 

X 2 log ~, 
f ( x )  = - -~; qi(e) = (1 - 2p)~'; a i -  tog K (74) 

For this choice one obtains that 
__C 

Y(E)typicai = (1 - 2p)LK L exp 

E _ _ e  

+ d(E)K m2 exp 

(E-e) 2] 
2La2 J 

(e_-e)2] (751 
4La2 J 
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where 

e = a l E  if < 2 log cq 
a l  

e = L(2a~ log cq)1/2 otherwise 

and d(E) is a fluctuating quantity of order 1 and therefore such that 

1 
lim ~ log d(E) ~ 0 

L --+ cx~ 

(76) 

Also if (75) gives an exponentially small value, one must take 
J V ' ( E ) t y p i c a  I = 0 .  

For this particular choice of energy and sign distribution (74) chosen 
to mimic the tree, one finds that (75) and (76) lead to  ,/V'(E)typica I of the 
form shown in Fig. 8. 

K n o w i n g  JV'(E)typical, one can calculate the typical value of the partition 
function using the relation 

Z(T) = f dE Y(E)e -E /T  (77) 

Evaluating this integral by taking a saddle point corresponds to identifying 
l IT with the slope of the curve log Y(E) .  One can see that this leads to 
two phases separated by a second-order transition when log ~"(E) has the 
form shown in Fig. 8a. 

When log Y ( E )  has the form of Fig. 8b one can obtain three phases 
with the two high-temperature phases separated by a first-order transition. 

l[og•(E) 

EGS : 

(a) 

llog•(E) 

EGs E 
(b) 

Fig. 8. The solid line shows the shape of [log , ~ ( ~ : ) t y p i c a i ] / L  for the two-step GREM of 
Section 6 for two values of p: (a) if log l l -  2p[ < - �89 log K and (b) if - �89  log K<  log l l -  2pl. 
In (a) ~ttyp,~l(e) is dominated at all energies by fluctuations. In (b) there are three regions: 
the middle one where ~Wttyp,cal(e) is equal to (~Ar(e)) and the side ones where Yttypioal(e) is 
dominated by fluctuations. 
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This corresponds geometrically to the existence of a straight line that is 
tangent to log Y ( E )  at two points. Carrying out this procedure for all 
values of p, one sees that this two-step GREM has the same free energy 
phase diagram as that of the corresponding REM [see (58)-(60)] with a 
Gaussian distribution of energies (20). 

This calculation on the GREM of two steps (n = 2) can be extended 
without any difficulty to any other value of n. The result is that the phase 
diagram and the expressions [(58)-(60)]  are the same for all values of n 
(n = 1, 2,...). Thus, we conclude that the GREM with an arbitrary number 
n of steps has the same free energy as the REM and since for n large, the 
GREM looks more and more like the tree, we conjecture that the tree 
problem of Section 3 and the REM have the same solution. 

The reasoning of this section can be extended easily to functions f 
more general than that of (74). Also, if, instead of random signs on each 
bond of the tree, we had some complex phases, i.e., ~ =exp(iq~) with q~ 
random, the reasoning of Sections 5 and 6 would remain unchanged and 
one would conclude that the REM and the tree still have the same free 
energies. 

One way of seeing it is to consider cases where the allowed phases take 
a discrete set of values (the n roots of unity). Then, instead of distinguishing 
between Z~- and ZL,  one has to consider Z~L j~ for each possible phase 
exp(2inj/n). The effect of competition between the fluctuations and the 
average would remain the same. 

Of course, if we had made more general choices of the ai and of the 
~i (which would not mimic the tree), then the final results would depend 
on n and on these choices of the ai and ~i as is the case for the GREM 
when p = 0 .  (22,23) 

7. C O N C L U S I O N  

In this paper, we have obtained the solution of four different problems. 
In Section 2, we gave a formula for the largest Lyapunov exponent of 

a product of large, sparse, real random matrices [Eqs. (2)-(7)].  The result 
is valid for an arbitrary distribution g(x) (which does not contain 6 
functions) of the nonzero elements, provided they are independent and 
identically distributed. In Section 3 we presented expressions for the free 
energy of the polymer in a random medium [(17)-(19)]  generalized to 
include random signs in the mean field limit (i.e., when the polymer is 
drawn on a tree). 

Although we could not solve these two problems directly, we argued 
in Section 4 that these two problems have the same free energy as the REM 
and the GREM (the similarity between the REM, the GREM, and the 
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polymer on a tree was already known ~15) in the case of p = 0 )  that we 
solved in Sections 5 and 6. Our numerical simulations of Sections 2 and 3 
gave good confirmation of our expressions for the Lyapunov exponent. 

The problem of directed polymers in a random medium generalized to 
include random signs (21~ has recently been the topic of some controversy. 
The debate centers around whether, in finite dimension, the addition of 
random signs into the problem changes the exponents that characterize the 
fluctuations of log Z and the transverse fluctuations. In 1 + 1 dimensions 
these exponents are known exactly for the standard directed polymer. (13'14) 
However, recent numerical simulations (27'28) and analytic arguments (27'29"3~ 
give conflicting results for whether these exponents remain true for the case 
of random signs. Our results cannot settle this debate one way or the other. 
We can, however, conclude from our results that a new phase (phase III) 
appears at the mean field level which is not present when there are no 
random signs. Whether this new phase persists in dimension 1 + 1, and, if 
it does, whether it would lead to different exponents, we cannot say. 

At the end of this paper, several interesting questions remain to be 
answered. First, it would be nice to be able to derive directly the results of 
Sections 2 and 3 without using the arguments of Section 4. Starting from 
the mean field solution of Section 3, one could also try to develop a lid 
expansion method as was done for the directed polymer problem with 
positive weights. (17) One can also wonder what would be the critical 
dimensions of the different phases (I, II, and III) which exist at the mean 
field level. One knows that for p- -0 ,  (16) phase I disappears in dimension 
less than 2. Does this remain true for phase III when p r 0? 

For the problem of random matrices discussed in Section 2, the first 
question would be to try to see whether one could calculate all the other 
Lyapunov exponents. It would also be interesting to understand why the 
convergence in the limit N--* ~ seems to be always very quick in phases 
I and III and slower in phase II. Lastly, products of random matrices (31) 
have often been considered in the context of localization. Although the 
sparse matrices we consider here (in Section 2) are probably not directly 
related to a precise model of localization, one can wonder whether for 
products of random matrices which describe in a more realistic way a 
localization problem, there would remain a trace of the three phases that 
we have described in Section 2 and, if so, what would be the physical 
interpretation of these three phases. 
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